Log In to see times in your timezone. Local time: Tuesday, June 22, 7:24 am EDT

2021 Awards Session >

2021 Young Investigator Award

Sunday, May 23, 2:30 - 3:30 pm EDT, Talk Room 1-2

The Vision Sciences Society is honored to present Martina Poletti with the 2021 Young Investigator Award.

The Young Investigator Award is an award given to an early stage researcher who has already made a significant contribution to our field. The award is sponsored by Elsevier, and the awardee is invited to submit a review paper to Vision Research highlighting this contribution.

The 2021 Young Investigator Award is sponsored by Elsevier/Vision Research.

Martina PolettiMartina Poletti

Assistant Professor, Department of Brain and Cognitive Sciences, University of Rochester

The 2021 Elsevier/VSS Young Investigator Award goes to Dr. Martina Poletti for fundamental contributions to our understanding of eye movements, microsaccades, and the nature of visual-motor function and attention within the foveola. Dr. Poletti is an Assistant Professor in the Department of Brain and Cognitive Sciences at the University of Rochester. She received her Bachelor's degree and Master's degree at the University of Padova, and completed her doctoral and postdoctoral work at Boston University.

Dr. Poletti's research addresses core questions regarding the interplay of attention and eye movements at the foveal scale. Her scholarly contributions will help revise textbook descriptions of the central fovea as a region of uniformly high acuity and microsaccades as involuntary eye movements, which purpose is to merely refresh the retinal image during fixation. Dr. Poletti's experiments have capitalized on high-resolution eye tracking and gaze-contingent display to demonstrate that microsaccades are not random but purposeful, serving to bring task-relevant items to the preferred region within the foveola. Her work has revealed that fine spatial vision within the 1-deg foveola is non-uniform and it is selectively modulated by attention. Within this microcosm of visual space, covert and overt shifts of attention can still be observed operating with a remarkably high-precision, and guiding microsaccades in an active exploration of details. Dr. Poletti's research exemplifies creative experimentation, cutting-edge methodology, and rigorous evaluation of longstanding theories in vision science.

Dr. Poletti will speak during the 2021 Awards session.

The interplay of attention and eye movements at the foveal scale

Human vision relies on a tiny region of the retina, the foveola, to achieve high spatial resolution. Foveal vision is of paramount importance in daily activities, yet its study is challenging, as eye movements incessantly displace stimuli across this region. Building on recent advances in eye-tracking and gaze-contingent display, we have examined how attention and eye movements operate at the foveal level. We have shown that exploration of fine spatial detail unfolds following visuomotor strategies reminiscent of those occurring at larger scales. Together with highly precise control of attention, this motor activity is linked to non-homogenous processing within the foveola and selectively modulates sensitivity both in space and time. Therefore, high acuity vision is not the mere consequence of placing a stimulus at the center of gaze: it is the outcome of a synergy of motor, cognitive, and attentional processes, all finely tuned and dynamically orchestrated.